This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1042

•

Unique Paper Code : 32341502

Name of the Paper : Theory of Computation

Name of the Course : B.Sc. (Hons.) Computer

Science

Semester : V (Admissions 2019-2021)

Duration: 3 Hours Maximum Marks . 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Question No. 1 (Section A) is compulsory.
- 3. Attempt any four Questions from Nos. 2 to 7
 (Section B)
- 4. Parts of a question must be answered together.
- 5. Consider $\Sigma = \{a, b\}$ for all the questions unless specified otherwise.

SECTION A

(a) Let s = {aa, bb} and T = {aa, bb, bbaa}. Show that S*=T*. Does the string aaa belong to the language S*? Justify.

P.T.O.

(b) Consider the following Context Free Grammar (CFG):

S -> SAbAbAbA | λ

 $A \rightarrow aA \mid \lambda$

Describe the language generated by given CFG. List any two words of the language. (3)

- (c) Construct a regular expression defining each of the following languages:
 - (i) L1= {words in which a appears tripled (in clumps of 3) if at all}
 - (ii) L2= {ends with a and does not contain the substring bb} (4)
- (d) Describe the language defined by each of the following regular expressions:
 - (i) bba*b
 - (ii) ((a+b) a) *

Also, determine the shortest word in the language.

(4)

(c) Build a finite automaton that accepts the language of words having exactly four letters. (4)

(f) Describe the language accepted by following finite automaton: (2)

(h) Using pumping lemma, show that the following language is a non-regular language: (4)

{anba2n where (abaa, aabaaaa, aaabaaaaaaa,...}

(i) Construct a deterministic PDA for the language L3= {anS where S starts with b and length (S) = n}

(4)

(j) Construct the context free grammar (CFG) for the language accepted by following finite automaton: (3)

P.T.O.

(k) Design a right shifting hiring machine. Assume the initial configuration to be ▷□w□ and desired output configuration to be ▷□□w□. (4)

SECTION B

- (a) Consider the following language of all the words defined over having Σ = {a, b} comprising only b's including empty string λ. Build a finite automaton FA that accepts the given language and find its kleepe closure i.e. (FA) *.
 - (b) Convert the following non-deterministic finite automaton to deterministic finite automaton: (4)

3. (a) For the following pairs of FAs, build a finite automaton that accepts the intersection of languages defined by FA1 and FA2. Also, build a finite automaton that accepts the complement of the language defined by FA1. (6)

- (b) Show that the set of regular languages are closed under union and kleene closure using non-deterministic finite automata. (4)
- 4. (a) Using the bypass theorem, convert the following transition graph into a regular expression: (6)

- (b) Use pumping lemma to prove that the language {a^nb^nc^n where n=1, 2, 3, 4, 5....} is non-context free language. (4)
- 5. (a) For the Push Down Automata shown below:
 - (i) Describe the language accepted by it.
 - (ii) Is the given PDA deterministic or nondeterministic? (4)

- (b) Construct a PDA for the language aⁿb^qa^m where m, n>=1 and q=m+n.
 (6)
- 6. (a) Consider the following context free grammar:

S -> AbB

 $A \rightarrow aA \lambda$

B -> aB | bB | λ

Construct an equivalent CFG by eliminating all λ productions and convert the resultant grammar into chomsky normal form (CNF). (4)

- (b) Write the CFG for the language containing all words which are parindromes excluding the null string. Create a parse tree for the word abaaba.

 (4)
- (c) Show that the following CFG is ambiguous: (2)

S -> XaXaX

 $X \rightarrow aX \mid bX \mid \lambda$

(a) Assume Σ = {0, 1}. Design a standard turing machine M that computes one's complement of the binary number on the input tape. Assume the

initial configuration to be > □w (if the input is > □w, the output should be > □w', where w' is the one's complement of w). Show the trace of above turing machine M on the string > □0110.

- (b) Prove that if a language is recursive, it is also recursively enumerable. (2)
- (c) Consider the Turing Machine $M = (K, \Sigma, \delta, s, \{h\})$, where $K = \{s,q,h\}$, $\Sigma = \{\sqcup, \triangleright, a\}$ and δ is given in the following table:

state,	symbol	δ
8	a	(q,\sqcup)
5	П	(h, \sqcup)
S	D S	$\circ(s, \rightarrow)$
q	a Jen	(s,a)
q	100	(s, \rightarrow)
q	040	(q, \rightarrow)

Give the representation of Universal Turing machine for M. (3)